
1262 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

FlashTrie: Beyond 100-Gb/s IP Route Lookup Using
Hash-Based Prefix-Compressed Trie

Masanori Bando, Associate Member, IEEE, Yi-Li Lin, and H. Jonathan Chao, Fellow, IEEE

Abstract—It is becoming apparent that the next-generation IP
route lookup architecture needs to achieve speeds of 100 Gb/s
and beyond while supporting IPv4 and IPv6 with fast real-time
updates to accommodate ever-growing routing tables. Some of
the proposed multibit-trie-based schemes, such as TreeBitmap,
have been used in today’s high-end routers. However, their large
data structures often require multiple external memory accesses
for each route lookup. A pipelining technique is widely used
to achieve high-speed lookup with the cost of using many ex-
ternal memory chips. Pipelining also often leads to poor memory
load-balancing. In this paper, we propose a new IP route lookup
architecture called FlashTrie that overcomes the shortcomings of
the multibit-trie-based approaches. We use a hash-based mem-
bership query to limit off-chip memory accesses per lookup and
to balance memory utilization among the memory modules. By
compacting the data structure size, the lookup depth of each level
can be increased. We also develop a new data structure called
Prefix-Compressed Trie that reduces the size of a bitmap by more
than 80%. Our simulation and implementation results show that
FlashTrie can achieve 80-Gb/s worst-case throughput while simul-
taneously supporting 2 M prefixes for IPv4 and 318 k prefixes for
IPv6 with one lookup engine and two Double-Data-Rate (DDR3)
SDRAM chips. When implementing five lookup engines on a
state-of-the-art field programmable gate array (FPGA) chip and
using 10 DDR3 memory chips, we expect FlashTrie to achieve
1-Gpps (packet per second) throughput, equivalent to 400 Gb/s for
IPv4 and 600 Gb/s for IPv6. FlashTrie also supports incremental
real-time updates.

Index Terms—DRAM, field programmable gate array (FPGA),
FlashTrie, hash, IPv4, IPv6, longest prefix match, membership
query, next-generation network, PC-Trie, Prefix Compressed Trie,
route lookup.

I. INTRODUCTION

R ECENTLY, major Internet carriers and vendors suc-
ceeded in experimenting with 100-Gb/s equipment. In

September 2008, Verizon successfully performed 100-Gb/s
transmission for more than 646 mi. Comcast and Cisco also an-
nounced successful trials of 100-Gb/s router interfaces in June
2008. Juniper announced a 100-Gb/s line card for their core
router (T1600) in March 2010 [2]. AT&T and Cisco announced

Manuscript received April 25, 2010; revised April 16, 2011 and
September 30, 2011; accepted November 06, 2011; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor T. Wolf. Date of publication March
14, 2012; date of current version August 14, 2012. This work is an extended
version of papers presented at the IEEE International Conference on Computer
Communications (INFOCOM), San Deigo, CA, March 15–19, 2010.
M. Bando and H. J. Chao are with the Department of Electrical and Com-

puter Engineering, Polytechnic Institute of New York University, Brooklyn, NY
11201 USA (e-mail: mbando01@students.poly.edu; chao@poly.edu).
Y.-L. Lin is with the Department of Computer Science and Information Engi-

neering, National Cheng Kung University, Tainan, Taiwan (e-mail: yllin@csie.
ncku.edu.tw).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2012.2188643

successful completion of the world’s first field trial of 100-Gb/s
backbone network technology, which took place in AT&T’s
live network between New Orleans, LA, and Miami, FL,
using Cisco’s latest carrier router, CRS-3, in March 2010 [3].
Accordingly, the IEEE 802.3ba Working Group is expected to
complete the standard for 100-Gb/s Ethernet by 2010 [4]. For a
100-Gb/s link, 250 million lookups per second are required in
the worst case. In other words, we have only 4 ns to complete
one lookup, and exceeding the 100-Gb/s lookup speed remains
a challenge.
We can also observe continuous growth of the Internet by ob-

serving the total amount of traffic. Cisco’s global IP traffic fore-
cast report states that global IP traffic will double nearly every
two years by the end of 2012, and thus, annual global IP traffic
will exceed half a zetta (10) bytes by 2013 [5]. The report
indicates that not only are throughput requirements of the core
networks increasing, but routing tables are also expanding ex-
ponentially [6] and are expected to grow to 1–2 million routes
in the near future. In addition to these requirements, next-gener-
ation routers must also support IPv4 and IPv6 seamlessly along
with real-time update capabilities. This trend challenges cur-
rent routers, especially core routers, by demanding support for
higher throughput and larger routing tables.
In this paper, we propose FlashTrie, a low-cost, high-speed

scalable route lookup architecture that eliminates the shortcom-
ings of currently available schemes by using: 1) on-chip mem-
bership query, and 2) a new data structure called Prefix-Com-
pressed Trie. FlashTrie can achieve route lookup for a 400-Gb/s
link for IPv4 with 2 M routes and an IPv6 with 318 k routes
by using a single field programmable gate array (FPGA) and
10 DRAM chips. This small number of required devices results
in low cost and low power consumption. FlashTrie also sup-
ports incremental real-time updates. This paper also discusses
two optimizations and prototype hardware implementations.
Section II discusses previously proposed architectures and

identifies their pros and cons. Section III gives an overview of
the scheme and introduces two methods that can resolve the
current issues. Section IV describes the detailed architecture
and query process. Section V discusses issues and our solu-
tions for updating. Section VI demonstrates the performance
and optimization of the FlashTrie, and improvements are shown
in Section VII. An overview and the results of a prototype hard-
ware implementation are presented in Section VIII. Section IX
concludes the paper.

II. RELATED WORK AND MOTIVATION

In IP route lookup, the system extracts each incoming
packet’s destination IP address and performs the longest prefix
match. Ternary content-addressable memory (TCAM)-based
schemes [7], [8] are widely used in midrange routers. How-
ever, their high cost and large power consumption make them

1063-6692/$31.00 © 2012 IEEE

BANDO et al.: FlashTrie 1263

unattractive for core routers. Direct lookup schemes [9]–[11]
can use standard SRAM or DRAM to store the next hop for
each prefix in a table or multiple tables that are addressed
by the prefix. This scheme is only effective for short address
lookups (e.g., less than 16 bits), but will not be realistic for
longer lookups due to prefix expansion [12].
To avoid the prohibitively large memory requirements,

hash-based schemes [13]–[20] have been proposed. Whether
applying a hash function to each prefix length or to a certain
prefix length (e.g., /16, /24 and /32 for IPv4), those prefixes
are hashed to a table. Various methods have been proposed
to reduce the number of prefixes hashed to the same entry of
the hash table. Bloom filters are sometimes used to query the
existence of the prefix before finding the next-hop informa-
tion (NHI) of the prefix [16], [18].
Hardware trie-based schemes [1], [21]–[26] can achieve high

throughput. However, they require many memory chips in par-
allel to accommodate the pipeline stages required by the many
levels of the trie, which has a height proportional to the number
of bits in the IP address. This is especially a problem for IPv6,
which has larger number of bits in the address. Multibit-trie ar-
chitectures [1], [22]–[25], such as Tree Bitmap [1], have gained
much attention because they can reduce the number of pipeline
stages and because of their efficient data structures. Each Tree
Bitmap node contains two pieces of information: the Internal
Bitmap of the subtrie and a pointer for the NHI; and the Ex-
ternal Bitmap for a head pointer to the block of child nodes
and a bitmap for child subtries. As a result, one lookup requires
multiple off-chip memory accesses. To reduce the number of
off-chip memory accesses, Song et al. proposed Shape Shift
Tries (SST) [23], which allows the number of trie levels in each
access to be flexible. SST can achieve approximately 50% re-
duction in memory accesses compared to the Tree Bitmap. Al-
though this reduction is significant, the number of memory ac-
cesses required by the SST is still considerable. In addition, SST
is only suitable for sparse tries, limiting its application to future
routers.
A different way to reduce memory accesses in the Tree

Bitmap architecture is to increase the stride size. However,
this will increase the bitmap size exponentially and result in
more off-chip memory accesses that limit system performance.
Another disadvantage for choosing a large stride size is that
update speed may be degraded. This is because there will be
more child nodes in each trie, and they are stored in consecutive
memory locations. Whenever a new child node is added, many
other child nodes are moved to other memory locations. In the
worst case, the entire block of child nodes is relocated.
Another typical drawback of trie-based schemes is their

uneven distribution of data structures in memory. Usually in
the tries, the lower level contains many more prefixes than the
higher level. Each pipeline stage consists of either one level or
multiple levels in the trie and typically stores the information of
its prefixes in a memory bank. As the number of prefixes differs
drastically from stage to stage, the loading among memory
modules is quite uneven, resulting in low memory utilization. A
scheme called CAMP proposed by Kumer et al. states a solution
for this memory uneven problem [27], where several subtries
share one pipeline stage (memory). Although this scheme can
achieve a higher memory utilization, the lookup performance
degrades from possible memory access contention. In [25], the

Fig. 1. DRAM bank allocation of TreeBitmap and FlashTrie.

authors proposed a solution to balance the pipeline memory.
However, their scheme requires 25 independent memory chips
resulting in a prohibitively high cost. The number of memory
chips required is even more when IPv6 is supported.
For instance, as shown in Fig. 1, a DRAM chip has four

memory banks with each storing tree bitmap information of
each level. Each arriving packet goes through the four pipeline
stages (i.e., the four levels of multibit tries) to complete the
lookup, ending up traversing the banks one after the other be-
fore the next packet can start the lookup operation. As a result,
only a packet can access the memory within a memory cycle.
On the contrary, with FlashTrie, each packet will only need to
access one of the four levels of multibit tries, resulting in only
accessing to one of the four memory banks. FlashTrie also or-
ganizes memory well so that all levels of the multibit tries can
fit in one DRAM bank. Therefore, up to four packets can access
to the memory within a memory cycle. In conclusion, FlashTrie
achieves four times the throughput of the TreeBit-based lookup
schemes.

III. FLASHTRIE

A. Overview

An overview of the FlashTrie architecture with an example
routing table is shown in Fig. 2. The routing table has 10 routes
for which corresponding prefixes and NHI are shown in the
table. The binary trie for this routing table is constructed next to
the routing table. We divide the binary trie into different levels
based on these -bit subtries (in this example). Thus,
Level 0 contains from prefix length 0 to prefix length 3, Level 1
contains from prefix length 4 to prefix length 7, and so on. Each
level contains one or more subtries.
It is important to note that all subtries should be indepen-

dent among different levels in the FlashTrie architecture to guar-
antee only one off-chip memory access of the multibit subtrie.
Once the prefix has been found in the multibit subtrie, an addi-
tional off-chip memory access of NHI is followed, which can be
pipelined, and thus the lookup speed of one packet per memory
access is achieved. For example, in the figure, the subtrie that
contains prefixes and does not have NHI in the root node.
This means, empty nodes (nodes that are not related to and
) in this subtrie depend on the node present one level up (

1264 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

Fig. 2. Overview of FlashTrie architecture.

in the example). To remove this dependency, we copy the NHI
of to the root of the subtrie (ST3) illustrated as an arrow.
The subtries are converted to a new compressed trie called

Prefix-Compressed Trie (PC-Trie), described in Section III-B,
which is then stored in off-chip memory. In the actual system,
all root nodes are stored in on-chip memory, which facilitates
easy updating (as described in Section V). The top level (Level
0) uses a direct lookup approach, so ST0 is not a PC-Trie and is
stored in on-chip memory.
One of the most important advantages of the FlashTrie archi-

tecture is that it guarantees only one off-chip memory access
to resolve IPv4/IPv6 trie. To ensure this, lightweight on-chip
hash modules are deployed to perform membership queries. An
optimized hash data structure, called HashTune [19], is used
for the hash function. The hash data structure is discussed in
Section III-C-II. The hash tables are queried to find the exis-
tence of a subtrie at each level in parallel. Since there are mul-
tiple levels, there could be matches in more than one level at
a time. This is resolved based on priority (the longest prefix
has the highest priority). Thus, only the longest matching sub-
trie is obtained from off-chip memory. The number of off-chip
memory accesses is controlled by this on-chip membership op-
eration. This operation is illustrated on the right side of the
figure. Section IV explains our new compressed data structure
PC-Trie and membership query operation.

B. Prefix-Compressed Trie

Controlling the number of memory accesses per lookup (ide-
ally, one memory access) is realized by managing bitmap size.
Reducing the bitmap size is one of the main motivations for
this work. Current DRAM has, at most, a 16-bit data bus and
a burst size of 8, so one DRAM access can read or write, at
most, 128 bits [28], [29]. Thus, any bitmap size exceeding 128
bits requires multiple memory accesses that significantly de-
grade lookup performance (speed). In Tree Bitmap, the internal
bitmap has bits and the external bitmap consumes

bits. Thus, the 9-bit stride size requires more than 1 kb,
which requires multiple off-chip memory accesses. The Tree
Bitmap scheme does not involve any bitmap compression tech-
nique. Hence, the bitmap size increases exponentially. Although
the Tree Bitmap scheme proposes two optimizations, split tree
bitmap and segmented bitmap, they are not sufficient. Using
split tree bitmap, the internal and external bitmaps are stored

in separate memories. This way, the Tree Bitmap node is re-
duced to nearly half the actual size. Still, one bitmap size is
too big to be fetched from an off-chip memory access. With
segmented bitmap, the original bitmap is cut in half each time
it is segmented. However, each segmented node must have a
pointer, which eventually creates considerable overhead. As a
result, segmented bitmap optimization actually increases the
total memory requirement. These two optimizations, as well as
other Tree Bitmap types of data structures, suffer from the same
problem.
We propose a new data structure named PC-Trie, as illustrated

in Fig. 3. The main difference between Tree Bitmap and our
data structure is that a bit in the Tree Bitmap represents only
one node, while a bit represents more than one node in PC-Trie.
More specifically, one bit of the PC-Trie can represent consec-
utive nodes (called siblings) in the same prefix length.
The example shows one subtrie that includes five pre-

fixes and the corresponding NHI
. In Step 1, the routing table is simply translated

into a binary trie representation. Fig. 3(a) shows Tree Bitmap
for the given routing table. Since Tree Bitmap simply converts
the binary trie representation to the bitmap representation,
Steps 2 and 3 are the same as in the binary trie. Bit positions in
the bitmap are set to “1” at the locations that have a prefix, and
set to “0” otherwise, as shown in the Final Data Structure in the
figure. Now let us look at PC-Trie2 in Fig. 3(b). It illustrates the
conversion process from a binary trie to PC-Trie2. The suffix
(the number) represents the compression degree. PC-Trie2
means compression of two sibling nodes into one. The two
sibling bits that are compressed are marked by a dotted circle.
Let us denote this set of nodes as node sets.
Construction of the PC-Trie has two rules: 1) all sibling nodes

must be filled with NHI if at least one node in the node set con-
tains NHI; 2) the parents node set can be deleted if two child
node sets exist. Let us start applying rule 1. Rule 1 says that if
the sibling is not present, NHIs are copied and filled with ei-
ther the parent’s or the ancestor’s NHI. Look at the PC-Trie in
Step 2. Prefixes , , and are the only children with an empty
sibling. The empty siblings of , , and need to be filled with
their respective parent’s or ancestor’s NHI. In the example,
is the parent of empty sibling , and is the parent of empty
sibling and the grandparent of empty sibling . Thus, Step 3
shows all the empty siblings filled with their respective parent’s
or ancestor’s NHI. Applying rule 2, a node set that contains

BANDO et al.: FlashTrie 1265

Fig. 3. Bitmap transformation from binary trie to (a) Tree Bitmap, (b) Prefix-Compressed Trie 2, and (c) Prefix-Compressed Trie 4.

and can be eliminated. In the Final Data Structure step, the
bitmap is constructed from the PC-Trie. Only one bit is required
to represent two nodes. As a result, the bitmap size is reduced
from 15 to 7 bits (a reduction of more than half). Similarly, a
higher degree of compression can be achieved to further reduce
the bitmap size. The bitmap size for the degree of compres-
sion can be formulated as PC-Trie bits
where is the stride size (in bits). Thus, for a PC-Trie 8 and
9-bit stride , the PC-Trie requires 63 bits as com-
pared to 511 bits for the Tree Bitmap. Construction procedures
of PC-Trie4 are also illustrated in Fig. 3(c).
One drawback of compressing the bitmap is that NHI may

need to be duplicated as the figure shows. For instance, six
NHIs are needed for the compressed PC-Trie2, while the orig-
inal number of NHIs is five. However, the number of memory
slots needed for the NHI table is reduced. For example, as shown
in Fig. 3, Tree Bitmap needs five slots, while PC-Trie2 needs
only three. The size of an NHI is so small that multiple NHIs can
be stored into a single memory slot. A single DRAM read (e.g.,
128 bits) for a memory slot effectively fetches multiple NHIs.
This not only results in a more compact memory footprint, but
more importantly, the number of memory accesses required is
the same as that before compression, if not fewer. Both IPv4
and IPv6 NHI can simultaneously be fit in one bank of a DRAM
chip after compressing the bitmap, as shown in Section VI. A
high-compression rate is also available in PC-Trie. Algorithm 1
shows the pseudocode to construct PC-Trie as explained above.
Let us consider the query process of input “100” as an

example. According to the routing table shown in the figure,
the PC-trie must return “E” as the next-hop information of the
corresponding input. The same result can also be obtained by
traversing the binary trie. The Tree Bitmap data structure is
shown in the right side of Fig. 3(a). First, check the bitmap

Algorithm 1: Prefix-Compressed Trie Construction

1: Prefix-Compressed Trie (SubTrie[], stride, compSize)
2: //All SubTries
3: for (to SubTrie.Length; i++) do
4: //All PC-Trie node
5: for (to ;) do
6: //All nodes in a PC-Trie node
7: for (to : t++) do
8: if (At least one prefix exist in an CompNode)

then
9: [Fill the PC-Trie node with proper NHI]
10: end if
11: end for
12: end for
13: //Eliminate Redundancy
14: for (to ; ns++) do
15: if (A PC-Trie node has both child PC-Trie nodes.)

then
16: [Remove the PC-Trie node.]
17: end if
18: end for
19: end for

contents of “100,” where “1” represents the existence of the
next-hop information. By using a pointer and the offset value
(number of 1’s prior to the “100” location), the corresponding
NHI “E” can be retrieved from the NHI memory. Now, let
us explain the query procedure of the PC-Trie as shown in
Fig. 3(b) and (c). For simplicity, we use PC-Trie2 to explain the
concept. The query processes of PC-Trie4 and higher perform
in a similar manner. The query input “100” is divided into two

1266 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

parts. The first part is used for bitmap access, and the second
part is used to identify the corresponding NHI. For PC-Trie2,
the input except for the least significant bit is used for bitmap
access (first part, “10” in this example). The least significant
bit (second part, “0” in this example) is used for NHI selection.
When traversing the PC-Trie with the input of “10,” the result
of “1” is reached, indicating the existence of NHI. A pointer
and the offset value are then used to access a set of NHI, “EB,”
from the NHI memory. Finally, the second part of the bit “0”
is used to select the correct NHI, “E.” In other words, PC-Trie
returns multiple NHIs from the NHI memory, and a corrected
NHI is chosen based on the least significant bit(s). The last step
of NHI selection is an extra step from the Tree Bitmap scheme,
but gives us an advantage of having a larger lookup depth in
levels (i.e., a larger stride size).

C. Membership Queries

As mentioned earlier, one of the most significant features of
FlashTrie is only one off-chip memory access for IPv4/IPv6
trie. To ensure this, each off-chip memory access must return
the intended PC-Trie for the queried input IP address. Other-
wise, additional memory accesses are required to determine
the longest matching prefix in the upper level of the subtrie.
FlashTrie performs on-chip membership queries to achieve
this. The most popular architecture to perform membership
queries is the Bloom filter [30], which is referenced in several
IP lookup papers [16], [18]. The most recognized advantage of
the Bloom filter is that the result is free from false negatives.
However, the result still contains false positives. False positives
can be reduced by increasing the number of hash functions per
lookup, the size of the hash table, or both. Achieving a lower
false-positive rate requires a considerable amount of resources
and many parallel hash functions that increase system com-
plexity and downgrade system performance. Even after all the
effort, the false-positive rate will still not converge at zero. We
overcome this issue by using an exact match operation along
with a hash function. Each entry of the hash table holds all or
a portion of the root IP address of the programmed subtrie.
We call this entry verify bits and perform an exact matching
operation with the input IP address. Hash functions inherently
do not have any false negatives. By means of an exact matching
operation, we ensure no false positives as well.
1) Membership Query Module: The basic function of the

membership query module is to take an IP address as input,
process it, and return a corresponding PC-Trie address. A
block diagram of the membership query module is shown in
Fig. 4. In the programming phase, all subtries are hashed, and
the contents of hash tables are constructed in off-line. We use
HashTune [19] as the hash function because it has a compact
data structure and better memory utilization, which is explained
in Section III-C.2. Since we use a hash function, there are
possible collisions. Therefore, the hash table has two types of
entries: one each for collision and noncollision cases as shown
in the figure. If the hash table entry has a collision, then its
Least Significant Bit (LSB) is set to “1”; else, it is set to “0” for
no collision. The collided items are stored in Black Sheep (BS)
memory located in the membership query module.
For querying operation, the input IP address is hashed, and

whether this hash entry has a collision or not is determined by
checking the LSB of the hash table entry. In the noncollision

Fig. 4. Block diagram of membership query module.

case, the hash table entry contains Verify Bits and Root node
NHI. If the Verify Bits are matched with the input IP address,
then the hash result becomes the PC-Trie address for the input IP
address. Thus, the PC-Trie addresses are not stored in the hash
tables. In the collision case, the hash table entry has a pointer to
BS memory and the number of collided items in the bin. Since a
hash may result in one or more collisions, we store the number
of collisions for each hash table entry. In the case of more than
one collision, the BSmemory is required to be accessedmultiple
times if only one BS memory module is used. This can become
the bottleneck of the system. Instead, we have multiple on-chip
BS memory modules that are accessed in parallel. Based on our
simulation results, in the worst case, three BS memory modules
are needed for IPv4 and 14 BS memory modules are needed for
IPv6. Fig. 4 also shows BSmemory entry contents that areVerify
Bits, Root Node NHI, and PC-Trie Address. Thus, whichever
Verify Bits of the BS memory entry are matched with the input
IP address, the corresponding PC-Trie address is retrieved from
the BSmemory entry.With the on-chip memory-based collision
resolving architecture, we can avoid using area- and power-con-
suming TCAMs or content-addressable memories (CAMs). By
this membership query operation, only one PC-Trie address is
resolved.
Hash-based matching schemes may encounter a small possi-

bility of hash collisions, where the number of elements stored
in the same bin exceeds the bin size. A straightforward solution
is to minimize the probability by using a small on-chip CAM to
store the overflow elements [31]–[33]. However, on-chip CAM
requires a significant amount of resources and power. On the
other hand, using on-chip RAM suffers from nondeterministic
query time due to a link-list addressing approach. Our proposed
Black Sheep Memory scheme uses collision avoidance and par-
allel operations to eliminate this drawback.
2) HashTune: In FlashTrie, memory-efficient HashTune [19]

is used for hashing operations. In contrast with a naive hash
function, HashTune has two important advantages: 1) key distri-
bution is more uniform over the entire hash table; and 2) the size
of Verify Bits can be reduced. Mitzenmacher shows the advan-
tage of using more than one hash function [34]. The main con-
tribution of his paper is an approach to balance queue length by
selecting the shortest queues from multiple one. HashTune al-
lows individual groups to select different hash functions if keys
in the group do not distribute well (for example, if the number
of collisions exceeds a predefined threshold, use another hash
function and rehash the keys). Hao et al. proposed a hash func-
tion that reduces collisions using the grouping idea [35]. Each
group is allowed to select a different hash function to maintain

BANDO et al.: FlashTrie 1267

Fig. 5. HashTune example. (a) Key distribution using a naive hash function
(Hash 1). (b) Key distribution using a naive hash function (Hash 2). (c) Key
distribution using HashTune.

minimum collisions. The scheme uses a hash function to dis-
tribute keys among the multiple groups while our scheme uses
a few bits of the keys. Contrasted to the proposed hash function,
our scheme has an advantage in terms of memory requirements.
Since all keys in a group share the same group ID, the redun-
dant group ID bit can be omitted from verify bits, which saves
a large amount of memory.
Fig. 5(a) and (b) shows key distribution using a naive hash ap-

proach. Each row represents a bin, and each dark square in the
row shows a key hashed to that bin. Typically, a naive hash func-
tion leads to the nonuniform distribution of items in the hash
table. This nonuniformity forces unnecessarily large bin sizes.
Even when a good hash function is found for a particular table,
after some updates, the distribution of items in the hash table
can still become nonuniform. Fig. 5(c) shows key distribution
using HashTune.
In HashTune, the entire hash table is segmented into multiple

small hash tables called groups. All groups have the same
number of bins. In Fig. 5(c), there are 12 bins segmented
into three groups, and each group has four bins (GroupA:
Bins A1–A4, GroupB: Bins B1–B4, GroupC: Bins C1–C4).
Each group is allowed to select a different hash function from
the pool of hash functions. GroupA uses Hash 1, and GroupB
and GroupC use Hash 2 in the example. The selected hash
function ID is stored in a Hash ID table, which is also stored in
on-chip memory and used for query operations. After applying
different hash functions, occupancy of bins in each group and,
hence, in the entire hash table becomes even. Because of the
balanced key distribution, the hash table size is smaller than in
naive approaches, indicated by shaded areas in the figure.
After the prefix updates, if the hash function assigned to a bin

group no longer provides good uniform distribution of items,
HashTune replaces that hash function with a more suitable func-
tion from the hash pool, i.e., rehashing. Note that this rehashing
only affects a small portion of the items, those that are hashed to
a particular bin group and can be handled in a reasonable time
without disturbing the performance [19].
The second advantage is also derived from grouping. Each

group is assigned an ID called Group ID, and the ID is selected
from several bits of the root node in each subtrie. For example,
an 8-bit group ID will be selected for 256 groups. We select the
group ID from the LSBs of the root node because this balances
the number of keys per group [19]. The bits assigned for the
group ID can be taken out from the Verify Bits because all items
in the group have the same the group ID. For example, resolving

Fig. 6. IPv4 prefix distribution from 2003 to 2010.

Fig. 7. IPv6 prefix distribution.

17 bits input and choosing 8 LSBs as the group ID gives us
the remaining 9 bits to be stored as Verify Bits. As a result, the
Verify Bit size and on-chip memory requirements are reduced.

IV. FLASHTRIE ARCHITECTURE AND LOOKUP

In this section, we analyze the actual routing table to construct
the FlashTrie architecture. We first study prefix distributions of
routing tables and determine the coverage and size (stride size)
of subtries. Fig. 6 shows the prefix distribution for IPv4 based
on the length of the prefix for the period 2003–2010 using
the routing table obtained from the RouteViews project [36],
Oregon. All routing tables are snapshots of the same day
(January 29) in each year. This history of prefix distribution
shows the trend is not changing.
One of the characteristics of the distribution is the number of

prefixes in /24, which is more than 50% of the total number of
prefixes. Any multibit-trie-based architecture attempts to main-
tain fewer subtries so that memory consumption is less. As-
signing /24 in a root of the subtrie is not a good idea because
it requires the number of subtries to be equal to the number of
prefixes in /24. Thus, we place /24 at the bottom of the sub-
trie. We select three levels based on the prefix distribution of
Fig. 6. They are IPv4/15 [15 Most Significant Bits (MSB) of an
IPv4 address], IPv4/16 (MSB 16–24 bits), and IPv4/25 (MSB
25–32 bits). IPv6 prefix distribution is also considered using real
routing tables [36] and expected future IPv6 routing tables [37].
Prefix distribution of the expected future IPv6 routing tables is
shown in Fig. 7. We can observe that majority of prefixes is
in /48. We place /48 at the bottom of the subtrie. Next, we de-
scribe the overall FlashTrie architecture and explain the IP route
lookup process.

A. Architecture and Lookup Operation

Fig. 8 illustrates the flow from receiving incoming packets
until obtaining the NHI for the input IP address using IPv4 route
lookup architecture. The IPv6 lookup procedure is similar ex-
cept that there are more levels.
The input 32-bit IPv4 address is categorized in IPv4/15,

IPv4/16, and IPv4/25. IPv4/15 is resolved using Direct Lookup
(on-chip), and IPv4/16 and IPv4/25 are resolved using the
membership query module (as explained in Section III-C.1)
(on-chip) and PC-Trie (off-chip). We resolve the PC-Trie

1268 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

Fig. 8. FlashTrie architecture for IPv4.

address, marked in the figure, from the output of the mem-
bership query module. Suppose “ ” is the input to this
PC-Trie. We can simply traverse the PC-Trie bitmap as we do
in a binary trie. If the bit is “ ,” then we go to the left child;
else we go to the right child. We start traversing from the MSB
of input. The aim is to find the longest matching prefix in the
PC-Trie. After traversing “ ” (Right) and “ ” (Left), we end
up with the third bit in the bottom (dark square in the PC-Trie).
The content of the bitmap is “ ,” which means NHI exists
for the input “ .” Since this is the longest matching prefix,
we resolve the address of NHI memory for this node set. The
address is resolved by a pointer stored with the PC-Trie node
and offset calculated from the bitmap. The offset is the number
of 1’s starting from the root of the PC-Trie until the longest
matching location. In this case, the offset is 2 (as there are two
1’s before the final location). The pointer is pointing to the
beginning of NHI entries in the memory for this PC-Trie. In the

example, the pointer points to the memory location of .
The offset is added to this memory location to get the exact

NHI set . Finally, the NHI is selected from the NHI set
by the LSB of the input. Since the LSB of the input is “ ,”
is selected as the final NHI. If LSB is “ ,” is selected.

For PC-Trie or a higher Prefix-Compressed Trie, one NHI
set contains four or more NHIs. In this case, more than one

bit from the input destination IP address is used to
find the final NHI.

V. UPDATE

Online update capability is an important criterion for fu-
ture routers. Currently, there are four updates observed per
second on average, but 25 k updates per second during peak
periods [6]. For the update analysis, we take peak rate to demon-
strate worst-case update capability. The anticipated growth
in routing table entries is 2 million, which is approximately
6.3 times the current amount of routing table entries. (This
anticipation is made based on the routing table growth reported
by the RouteViews project [36] as well as the CIDR report [6].)
If updates also increase proportionately, there would be around
160 k updates per second during peak periods.
To support this kind of growth, we reserve 10 million packets
per second (Mpps) for update operations. This is sufficient for
both on-chip and off-chip memory updates, as the Section VI
explains.

Fig. 9. On-chipmemory update. (a) Direct NHI programming. (b) Indirect NHI
programming.

1) On-Chip Memory Update: NHI of the root at each sub-
trie is stored in on-chip memory as described in Section III.
Fig. 9 shows two types of update methods: 1) direct NHI pro-
gramming, and 2) indirect NHI programming. The example in
Fig. 9 shows four root nodes of subtries represented as , , ,
and . For direct NHI programming, since there is no interme-
diate node between each subtrie root, NHI of root node is
simply copied to the root nodes, , , of the following level. A
problem occurs when an update is required at some upper stream
along the path. For instance, if a new route is to be added in
the subtrie that has a root node on the path, then all the fol-
lowing root nodes also need to be updated. The number
of updates might be excessively high, especially for IPv6 be-
cause of longer addresses (more levels). To avoid this problem,
we propose Indirect NHI programming as shown in example (b),
in which null value is stored at the root node that does not have
NHI to indicate actual NHI located in the root node of upper
level. While doing so, the update of traverses only one level
down. Thus, the new route only affects the root node , but
not , . It is important to note that by making sure there is only
one level of dependency, we maintain all the intermediate sub-
tries in the on-chip membership query module. In other words,
if some intermediate subtries do not exist, we create only root
node NHI and store it in the membership query module (i.e., if
a subtrie exists at Level , root NHIs of the upper level from
Level to Level exist in the membership query module).
An example of an on-chip update using the indirect NHI pro-

gramming method is illustrated in Fig. 10. The figure illustrates
four levels of subtries, the root NHI supposed to be stored in
on-chip memory. In the example, update is applied in the subtrie

BANDO et al.: FlashTrie 1269

Fig. 10. On-chip memory update detail. (a) Before update applied. (b) After an
update is applied in Level 1.

in Level 1, and a new route is added. The update to subtries
is one level down (Level 2), so the root node of ST2 is modified
from null to . Any update only affects one level below, and
the far level does not have any influence. Indeed, the root node
of ST3 located in Level 3 maintains the same NHI, null.
In the worst case for an 9-bit stride, there can be 511 updates

(if the node below the root node has to be updated). Therefore,
for future 160 k updates with each update requiring 511 memory
accesses, the total updates, in the worst case, will be 81.8million

, which is less likely to be happen. Since this is an
on-chip hash table update, 10Mpps is still sufficient because the
on-chip hash table is segmented and stored in individual on-chip
memories. Multiple hash tables can be updated independently.
2) Off-Chip Memory Update: There are two inde-

pendent off-chip memories—one for Prefix-Compressed
Trie (PC-Trie) and another for NHI. For PC-Trie, we
need eight memory accesses per update because the same
PC-Trie is duplicated among all 8 banks. This requires
1.28 Mpps banks updates . For NHI, the
worst-case number of memory accesses needed per update is

(e.g., for PC-Trie8 with 9-bit stride, six memory accesses are
required). If PC-Trie8 is used for all subtries, then 7.68 Mpps
are needed memory access banks updates in
the worst case. Thus, 10 Mpps is more than enough to update
both on-chip and off-chip memory in real time.
In addition, Tree Bitmap update is not trivial, especially

when inserting new child nodes. This operation requires mul-
tiple memory accesses to arrange all child nodes in consecutive
memory locations. Moreover, after multiple updates, Tree
Bitmap has to perform defragmentation to make consecutive
memory space available. On the other hand, FlashTrie does
not have these problems because it systematically organizes
hash-based addressing. Items stored in Black Sheep memory
hold individual pointers, and therefore, we can allocate PC-Trie
without any constraint.

VI. PERFORMANCE EVALUATION

For evaluation purposes, we obtain current routing ta-
bles from multiple locations such as Oregon; California;

TABLE I
ROUTING—NUMBER OF SUBTRIES IN EACH LEVEL FOR THE THREE ROUTING

TABLES

London, U.K.; and Tokyo, Japan. These routing tables have
similar prefix distributions. Therefore, we use the largest
routing table, Oregon, from the RouteViews project [36]
(Jan 01 2010 00:00). This table contains 318 043 routes. We
generate 2 million routes for the future routing table based
on the prefix distribution trend discussed in Section IV. The
size of a real IPv6 routing table is still around 3000 [6], [36],
which is extremely small for the evaluation. We synthesize an
anticipated IPv6 routing table following the methods presented
in [37]. It uses IPv4 routes and an autonomous system (AS)
number, giving a more realistic routing table as compared to a
randomly generated table. Thus, the synthesized IPv6 routing
table contains 318 043 routes (same as the real IPv4 routing
table size).
First, we extract subtries to generate the FlashTrie data struc-

ture. Table I shows the number of subtries in each level and
the total subtries for all three routing tables. We mainly use an
9-bit stride size for the entire evaluation, and detail stride set-
tings are listed in Table I. This level selection is based on the
observations of real routing table characteristics discussed in
Section III. We also show the distribution of IPv4 routing table
from 2003–2010 in Fig. 6, from which we conclude that it is
safe to assume that this trend will not change severely. Con-
sidering the long-term stability of the IPv4 distribution trend,
we believe that the IPv6 distribution trend will also be steady.
Even if this trend changes, the deployment transition is slow
and gradual. Our DRAM-based approach has enough capacity
to absorb such changes. Following this setting, we evaluate per-
formance in terms of memory requirements and lookup speed
for the IPv4 and IPv6 routing tables. The evaluation is based on
the results of simulation and hardware implementation.

A. Memory Requirements

In FlashTrie, two types of memory are used: 1) on-chip
memory, and 2) off-chip memory. We next discuss the data that
is stored in memory and the memory size required to support
IPv4 and IPv6 simultaneously.
1) On-Chip Memory: FlashTrie pushes most of the memory-

consuming operation outside of the chip (off-chip memory).
Some operations, however, are kept on-chip to enhance lookup
performance and online updateability. On-chip memory is used
for: 1) direct lookup for up to /15(IPv4) or /12(IPv6); 2) hash
table for membership queries; 3) hash ID table (storing a hash ID
for each group); and 4) Black Sheepmemories for collided items
in the hash table. The on-chip memory requirements are shown
in Table II. The first 15 bits are resolved by the direct lookup
approach in IPv4 with 8 bits NHI kb bits . We use
64 hash functions for all tables and levels. Taking IPv4/16 from

1270 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

TABLE II
ON-CHIP MEMORY REQUIREMENTS

TABLE III
CONFIGURATIONS FOR NUMBER OF GROUPS AND NUMBER OF BINS IN EACH

GROUP.

TABLE IV
PREFIX-COMPRESSED TRIE BITMAP MEMORY REQUIREMENT COMPARED WITH

TREE BITMAP

the real routing table as an example, the hash table is segmented
into 2048 groups. Therefore, the hash ID table size will be 12 kb

bits . The simulation result determines the
number of groups and bins in each group. The configurations
are summarized in Table III.
It is clear from the results in Table II that to support 2 M

IPv4 routes (1.47 Mb) and 318 k IPv6 routes (8.17 Mb) si-
multaneously, we need 9.64 Mb of on-chip memory. Thus, we
can have three copies of this data in the on-chip memory of a
state-of-the-art FPGA that has 38Mb on-chip memory capacity.
Also, all on-chip memory has independent dual ports. There-
fore, six engines can fit on one chip.
2) Off-Chip Memory: The off-chip memory (DRAM) in

FlashTrie consists of two independent memory chips, PC-Trie
and NHI memory. Table IV shows memory requirements
for PC-Trie. The subtrie size for Tree Bitmap is 1063 bits
internal bitmap external bitmap two pointers , and for
FlashTrie it is 83 bits PC-Trie bitmap pointer for 9-bits
strides PC-Trie8. This significant reduction is because of
bitmap compression and the elimination of the external bitmap.
Table V shows memory requirements for the NHI (assuming
8 bits NHI). The PC-Trie for every level can fit in one bank of
DRAM as shown in Fig. 11(a). Even if NHI is duplicated, we
can still easily fit IPv4 and IPv6 NHI into one bank of DRAM
as shown in Fig. 11(b). The data allocation in the figure is based
on a 1-Gb memory (each bank has 128 Mb with 8 banks).
The graph in Fig. 12 shows the off-chip memory required
for bitmap and NHI for different degrees of compression of
PC-Trie in the FlashTrie as compared to the Tree Bitmap. It
is evident from the result that the reduction in bitmap size is

Fig. 11. DRAM memory data allocation. (a) PC-Trie memory. (DRAM) (b)
NHI memory (DRAM).

Fig. 12. Off-chip memory requirements of TreeBitmap versus FlashTrie.

more than 80% (for higher compression degree of PC-Trie).
As another comparison, let us show a result of smaller stride
size in TreeBitmap scheme. For a given smaller stride size,
the number of subtries increases because the coverage of each
subtrie reduces. As a result, the bitmap memory requirements
also increase. Using a real 318 k IPv4 routing table, there
are 75 041 subtries with a stride-5 setting. (11 490 subtries in
IPv4/15; 60 801 subtries in IPv4/20; 2438 subtries in IPv4/25;
and 312 subtries in IPv4/30. The length represents root node
level.). A stride of 5 is a reasonable setting for the TreeBitmap
scheme since one bitmap can fit (103 bits) in one DRAM burst
access (128 bits). In total, 12.1 Mb are required in an off-chip
memory (9.6 Mb for the bitmap memory and 2.5 Mb for the
NHI memory.) With a similar off-chip memory size, FlashTrie
can achieve a much higher throughput as shown in this section.

B. Lookup Speed and Timing Analysis

The feasibility of our scheme has been demonstrated so far
in terms of memory requirements. Let us consider lookup speed
with memory-access timing. The on-chip process is straightfor-
ward. One on-chip engine running at 200 MHz can process one
lookup in 5 ns, which is equivalent to 200 Mpps. As a contrast,
off-chip memory access is a little more restricted and requires
some analysis. Let us start with a quick review of current DRAM
technology and discuss the timing analysis in detail.
Driven by an enormous market demand, DRAM speed

and capacity are increasing rapidly while their power con-
sumption and price are decreasing significantly [38], [39]. A
state-of-the-art DRAM reaches 12.80 GB/s of throughput and
4 Gb of capacity [28], [29], and it has 8 banks on a chip. Using
state-of-the-art DRAM technology (DDR3—1600 [Memory

BANDO et al.: FlashTrie 1271

TABLE V
NEXT-HOP INFORMATION MEMORY REQUIREMENTS (TAKING NEXT-HOP INFORMATION AS 8 BITS) COMPARED TO TREE BITMAP

Fig. 13. DRAM memory access timing diagram .

clock 200 MHz, Bus clock 800 MHz]), only 5 ns is required
to read 8 burst data (128 bits with 16-bit data bus). Thus,
accessing 8 banks takes 40 ns, which satisfies timing restriction

(38 ns).
Fig. 13 illustrates how we continuously read 128 bits every

5 ns with a detailed timing diagram. Row activate (ACT) and
read (RD) commands are sent sequentially following the timing
specification of DDR3 SDRAM. For the sake of clear presenta-
tion, commands are presented for each bank. It is clear from the
figure that data from each bank are output back to back after the

cycle from ACT command.
By using on-chip membership query, FlashTrie needs only

one PC-Trie memory access and one independent pipelineable
NHI memory access. Hence, the minimum lookup time of the
system reaches 5 ns per lookup, which is equivalent to 200Mpps
in the worst case. Therefore, two FlashTrie engines with two
sets of DRAM chips (two PC-Trie and two NHI memories)
can reach 400 Mpps. Worst-case IPv6 performance is 50%
more than IPv4. The reason is that in FlashTrie, IPv4 and IPv6
have the same number of memory accesses per lookup. Even if
we consider update time (10 Mpps per engine), lookup speed
exceeds 100 Gb/s (250 Mpps). Moreover, the state-of-the-art
FPGAs (Xilinx Virtex-6), which contain 38 Mb of block RAM,
can have six engines in a single FPGA chip. With a single
Virtex-6 FPGA and six sets of DDR3—1600 DRAM chips,
FlashTrie can reach 1.2 Bpps, which is more than 480 Gb/s for
IPv4 and more than 720 Gb/s for IPv6 in the worst case (for a
minimum IPv6 packet size of 60 B). Note that our throughput
is calculated based on the industry benchmark, where a packet
is considered to be 50 B in IPv4 and 75 B in IPv6.
Tree Bitmap and FlashTrie timing analyses are presented in

Fig. 14 with the IPv6 lookup example (considering that only the
first 64 bits of IPv6 are used for lookup). The timing diagram

Fig. 14. DRAM memory access timing diagram for tree bitmap versus
FlashTrie. DDR3—1600 DRAM is used for the comparison (ns bits
read and ns .

compares the Tree Bitmap and FlashTrie schemes using the
same resources. The Tree Bitmap uses the first 12 bits for
direct lookup, and the rest of the bits are traversed in 6-bit
strides. Assume that the Tree Bitmap uses optimization to fit
the bitmap into one burst and ignores the DRAM read latency
and processing time between levels. In this case, the Tree
Bitmap approach requires 10 off-chip DRAM memory ac-
cesses (nine external bitmap and one internal bitmap accesses)
for one lookup. Therefore, one IPv6 route lookup takes 50 ns,
whereas FlashTrie can perform one lookup per 5 ns. Therefore,
FlashTrie can finish 10 route lookups during the same period
(50 ns). Hence, we can conclude that using the same number of
memory chips, FlashTrie can perform 10 times faster compared
to the Tree Bitmap. In other words, for the same throughput,
Tree Bitmap needs 10 times more memory chips, which makes
Tree Bitmap infeasible for high-speed route lookups.

VII. OPTIMIZATIONS

The amount of on-chip memory is always limited compared
to off-chip memory. Efficient usage of on-chip memory leads

1272 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

TABLE VI
ON-CHIP MEMORY REQUIREMENTS OF MULTIKEYS IN A BIN

us to achieve even higher throughput by duplicating mul-
tiple lookup engines. As we see in Section VI, Hash Table
and Black Sheep memory consume the dominant portion of
on-chip memory. In this section, we introduce two optimization
methods that will reduce the memory requirements of these
two modules.

A. Multiple Keys per Bin

This optimization contributes to reducing the BS memory re-
quirement. The bin of the hash table takes two types of entries:
one for the collision (overflow) and another for the noncollision
(nonoverflow) cases as described in Section III-C. It contains
root NHI and Verify Bits for a prefix in the nonoverflow case.
Otherwise, it contains the BS memory address and the number
of overflows. Assume a hash table allows only one key per bin,
and one key is already programmed in the bin. If another key
is assigned to the same bin, the bin is now used to store BS
memory information (pointer to the BS and number of over-
flows). The key originally stored in the bin is relocated to the
BS memory. Thus, the two keys are stored in the BS memory.
It requires a total of three memory slots (one in the hash table
and two in the BS memory), which means the memory over-
head is 33.3%. Here, we apply multikey optimization, which
can reduce the memory overhead caused by collisions (over-
flow). Allowing more than two keys per bin, we can eliminate
the overhead of the overflow. According to our statistics, the
majority of the bins has only one or two collisions. Thus taking
this optimization, many bins will not require BS memory. This
significantly reduces the BS memory requirements.
We experimented on two types of setting: allowing two or

four keys per bin. The results are listed in Table VI. In the table,
the multikey optimization is not applied to the first column for
each routing table. The results of adopting two and four entries
in a bin are compared to the first column in each routing table.
The results show that the on-chip memory requirement of both
IPv4 real routing table and IPv6 are decreased from 8% to 16%.
Since the total number of entries remains the same, the reduc-
tions are mainly contributed from the BS memory, which means
that fewer subtries are placed into BS memory. As a result, the
density of hash table memory becomes higher.

B. Incremental Verify Bits

This optimization contributes to reducing the BS memory
requirement as well as the hash table size in the membership
query module. The hash-based scheme needs to perform a ver-
ification operation for the hash result to identify any false posi-
tive described in Section III-C. The Verify Bits are stored in the
hash table and BS memories. Both memories are implemented

Fig. 15. Incremental Verify Bits optimization.

in on-chip memory, so the size of the Verify Bits directly af-
fects the memory requirements of on-chip memories. Without
this optimization, the length of the Verify Bits increases propor-
tionally to the length of the prefixes. For example, the size of
the Verify Bits for IPv4/16 is 5 bits, and it becomes 16 bits for
IPv4/25. Furthermore, IPv6 requires only 8 bits in the first level
(IPv6/13), but increases the requirement to 49 bits in the bottom
level (IPv6/58).
FlashTrie executes all levels of the membership query in par-

allel. Recall that all root NHIs of intermediate subtries (ances-
tors) exist in the membership query module as we mentioned
in Section V. In this circumstance, a subtrie of the input IP ad-
dress is matched in a lower level, which implies that the shorter
subtries also exists in the upper levels. Let us take IPv4 as an ex-
ample. If the subtrie of IPv4/25 exists, the root NHI of IPv4/16
can also be found in the membership query module. Verify Bits
for both root of subtries are stored in the membership query
module. As shown in Fig. 15, the Verify Bits of IPv4/16 consist
of bits from 31 to 27 of the subtrie IP address, and Verify Bits of
IPv4/25 consist of bits from 31 to 16 of the subtrie IP address.
The Verify Bits of the IPv4/25 and IPv4/16 are identical.
Thus, the original scheme stores redundant Verify Bits in all
levels. The membership query module of IPv4/16 stores Verify
Bits of bits , marked as VB16 in the figure. The module
of IPv4/25 needs only bits , marked as VB25. During
the query process, the VB16 will be passed to the module of
IPv4/25. The verification for the prefix of IPv4/25 will be com-
pared with the concatenation of VB16 and VB25. In the case of
IPv6, the storage of Verify Bits is organized as in Fig. 16. We
call the scheme Incremental Verify Bits.
Table VII lists the on-chip memory requirements and com-

parisons of applying incremental Verify Bits optimization com-
bined with multikeys optimization. However, the multikey opti-
mization is not applied to the first column of each routing table.
These columns show the performance of applying the incre-
mental Verify Bits scheme only. Compared to the corresponding
columns in Table VI, the scheme gains improvements. Even
when multikeys optimization is applied, additional improve-
ments remain achievable. Although the improvements for IPv4
are fractional, improvements in IPv6 is significant. The reason is
that even though the requirements of hash table memory and BS

BANDO et al.: FlashTrie 1273

TABLE VII
ON-CHIP MEMORY REQUIREMENTS OF MULTIKEYS AND VERIFY BITS BYPASSING

Fig. 16. Incremental Verify Bits optimization for IPv6.

Fig. 17. Overview of hardware block diagram.

memory in IPv4/25 are decreased, their proportions are small.
By this optimization, our result shows that over 40% of on-chip
memory can be saved.
Applying these optimizations, the total on-chip memory re-

quirements are reduced from 9.64 to 5.07 Mb (1.38 Mb—IPv4,
3.69 Mb—IPv6). With the state-of-the-art FPGAs that contain
38 Mb of dual-port on-chip memory, 14 lookup engines can be
supported. As a result, a processing speed of 2.8 Gpps can be
achieved.

VIII. HARDWARE IMPLEMENTATION

In this section, we describe detailed architecture of our pro-
totype hardware implementation. The hardware utilization of
the prototype design is also presented at the end of the section.
Fig. 17 shows block diagrams of the FlashTrie lookup engine.
The engine consists of five main submodules: Direct Lookup,
Membership Query, PC-Trie Lookup, NHI Lookup, and Priority
Checker. When performing lookup, the input IP address is fed
into the Direct Lookup and Membership Query modules. The
Direct Lookup module resolves the NHI in level zero, while the
others cope with levels one and two. The Membership Query
module checks if there are existent subtries for the input IP ad-
dress in the next two levels. If there are, the module generates
a PC-Trie address to query off-chip memory, where the bitmap
and memory address of NHI set are stored, and forwards it to
the PC-Trie Lookup module. The PC-Trie Lookup module is
responsible for reading the data from external memory in terms

of the input address, traversing the bitmap for further prefix
matching, and calculating the address of the target NHI set.
Then, the NHI Lookup module uses the address to obtain a set
of NHIs from another off-chip memory and picks out the final
one with partial IP according to the FlashTrie algorithm.
Each IP address query has an exact match in level zero, and

it also may have subtrie matches in levels one and two. The
outcome from the longest one will be the final NHI choice. At
the end, the Priority Checker module selects the NHI from Di-
rect Lookup module as output if only a subtrie matches in the
level zero; otherwise, it returns the NHI from the NHI Lookup
module.

A. Hardware Implementation of Direct Lookup Module

TheDirect Lookupmodule is used for level-zero NHI lookup.
The NHI for this level is stored in an on-chip Block RAM. The
module consults the on-chip Block RAM according to the input
IP address. Here, only most- significant bits from 31 to 17 are
used as the indexing address to fetch NHI out of memory. The
fetched NHI is stored in a first-in–first-out (FIFO) buffer until
matching procedures in other levels are completed. Then, the
NHI for the input IP address is chosen between them.

B. Hardware Implementation of Membership Query Module

Once the IP address is input into the lookup engine, the subtrie
matching procedures of variant length are executed in parallel.
The membership query module checks if subtries exist for the
input IP address. For the IPv4 lookup, the binary trie is divided
into levels of prefixes of lengths 16 and 25 and marked as level
one and two, respectively. As shown in Fig. 18, each level has
an individual PC-Trie Address Generator for parallel lookup and
PC-Trie address generation. Bits of the input IP address
are used as the input for module /16, while bits are for
module /25. Bits of the IP address are stored in the FIFO
buffer for further use. The generators for different levels are ba-
sically the same in structure and operations. The generator for
level two is used as an example here and shown in Fig. 19. To
store plenty of subtries in limited memory slots, the HashTune
is adopted. The subtries are grouped in terms of partial bits of
its prefix. Each group can use a hash function to determine the
position of the memory slot for storing the information of the
subtrie. The LSB 11 bits of the generator’s input are treated
as a group number to query the Hash ID memory for its hash
function. Then, the whole input is involved in calculating the
address, used to query the on-chip hash table memory, by em-
ploying HashTune. The output from hash table memory can be
interpreted in two ways. As mentioned in Section III, it is pos-
sible that more than one subtrie is hashed into the same bin,
which results in collision. In this case, the output is taken as a
query address to further refer to the BS memory. Otherwise, it is

1274 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

Fig. 18. Membership Query module.

Fig. 19. Detail of the PC-Trie address generator.

Fig. 20. Block diagram of PC-Trie processing unit.

used to verify the existence of the subtrie for the input by com-
paring the Verify Bits from the output with the input. In the ac-
tual implementation, the BS memories are queried whether the
collision happens or not. Then, the verification compares the bits
of the input with the outcomes from all BS memories as well as
the hash table memory in the Matching Checker module. If it is
identical to the one from hash table, the output address of the
Matching Checker module is the same as the one used to query
the hash table. On the contrary, it will be extracted from the BS
memory’s outcome, whichever Verify Bits of the BS memory
entry are matched with the input IP address.

C. Hardware Implementation of PC-Trie and NHI Lookup

If a subtrie is found for the input IP address in the Mem-
bership Query module, the IP address may have longer prefix
matching in the subtrie, which is stored as a PC-Trie. The
PC-Trie Lookup module, as shown in Fig. 20, uses the ad-
dress generated by the membership query module, to refer to
the off-chip memory. The DDR2 interface employs a DDR2
memory controller, generated by the Xilinx Memory Interface
Generator (MIG). The data from the memory consists of the
bitmap and NHI set base address for a subtrie. The bitmap
is traversed to determine further matching with the partial IP
address, the remainder from the membership query stage. Then,
the offset of the memory position is counted as mentioned in
Section III and is added to the NHI set base address, resulting
in the address of the NHI set. The partial IP address results in
the NHI index by removing the bits used for partial matching.
Then, the NHI lookup module, whose architecture is shown in
Fig. 21, applies the NHI set address to query another off-chip
memory, which stores the NHI set data. The resulting NHI set
contains 16 NHIs. The final one is selected based on the NHI
index.

Fig. 21. Block diagram of NHI processing unit.

TABLE VIII
HARDWARE RESOURCE REQUIREMENTS

D. Hardware Implementation Result

The FlashTrie lookup engine is implemented on a Xilinx
Virtex-4 FX100 FPGA chip, which has 42 176 slices and
376 block RAMs. The development environment is ISE 10.1.
The design is downloaded on the FPGA on a board PLDA
XpressFX. The board is equipped with two 1-Gb DDR2
SDRAMs. Each independently connects to the FPGA chip.
The prototype design uses one DRAM chip for bitmap storage
and another is for NHI. Both DRAMs have a 16-bit data bus.
The burst size is configured as 8, in which 128 bits of data
can be read once. The whole design, including the DRAMs, is
running at 200 MHz (bus clock 400 MHz). Under this clock
frequency, 200 Mpps per engine can be achieved. The memory
controllers are generated by the Xilinx Memory Interface
Generator (MIG 2.3). The input to the engine is placed in an
on-chip memory and fed into it. The resource utilizations are
listed in Table VIII. One engine is employed in the prototype.
The total occupied slices are 8%, and Lookup tables (LUTs)
are 4%. The used block RAM/FIFOs are 29% of the FPGA
capacity.

IX. CONCLUSION

In this paper, we proposed a low-cost, high-speed, next-gen-
eration route lookup architecture called FlashTrie that can
support 2 M IPv4 and 318 k IPv6 routes simultaneously. A
new compact data structure for a multibit-trie representation,
called Prefix-Compressed Trie, and a hash-based, high-speed,
memory-efficient architecture are proposed. Comprehen-
sive simulation results and hardware implementation show
the FlashTrie architecture can achieve 160-Gb/s worst-case
throughput with four DDR3 DRAM chips. This exceptionally
small number of off-chip memory requires very little I/O pins in
the main control chips and maintains low system cost. FlashTrie
can support real-time incremental updates by reserving only
5% of total throughput (10 Mpps per engine).

REFERENCES

[1] W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap: Hardware/soft-
ware IP lookups with incremental updates,”Comput Commun Rev, vol.
34, no. 2, pp. 97–122, 2004.

BANDO et al.: FlashTrie 1275

[2] Juniper Networks, “Industry leaders demonstrate 100 Gigabit Ethernet
interoperability at OFC,” Press Release, 2010 [Online]. Available:
http://www.juniper.net

[3] Cisco, “Cisco introduces foundation for next-generation Internet: The
Cisco CRS-3 carrier routing system,” Cisco Press Release, 2010 [On-
line]. Available: http://newsroom.cisco.com

[4] IEEE 802.3 Ethernet Working Group, “IEEE P802.3ba 40 Gb/s and
100 Gb/s Ethernet Task Force,” 2010 [Online]. Available: http://www.
ieee802.org/3/ba/

[5] Cisco, “Approaching the zettabyte era,” Cisco White Paper, 2008 [On-
line]. Available: http://www.cisco.com

[6] T. Bates, P. Smith, and G. Huston, “CIDR report,” [Online]. Available:
http://www.cidr-report.org/

[7] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs: Power-efficient
TCAMs for forwarding engines,” in Proc. IEEE INFOCOM, 2003,
pp. 42–52.

[8] K. Zheng, C. Hu, H. Lu, and B. Liu, “A TCAM-based distributed par-
allel IP lookup scheme and performance analysis,” IEEE/ACM Trans.
Netw., vol. 14, no. 4, pp. 863–875, Aug. 2006.

[9] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware
at memory access speeds,” in Proc. IEEE INFOCOM, 1998, pp.
1240–1247.

[10] N.-F. Huang and S.-M. Zhao, “A novel IP-routing lookup scheme and
hardware architecture for multigigabit switching routers,” IEEE J. Sel.
Areas Commun., vol. 17, no. 6, pp. 1093–1104, Jun. 1999.

[11] N.-F. Huang, S.-M. Zhao, J.-Y. Pan, and C.-A. Su, “A fast IP routing
lookup scheme for gigabit switching routers,” in Proc. IEEE IN-
FOCOM, 1999, vol. 3, pp. 1429–1436.

[12] V. Srinivasan and G. Varghese, “Fast address lookups using controlled
prefix expansion,” Trans. Comput. Syst., vol. 17, no. 1, pp. 1–40, 1999.

[13] S. Cadambi, S. Chakradhar, and H. Shibata, “Prefix processing tech-
nique for faster IP routing,” US Patent 2006/0 200 581 A1, 7 398 278,
2005.

[14] S. Kaxiras and G. Keramidas, “IPStash: A set-associative memory ap-
proach for efficient IP-lookup,” in Proc. IEEE INFOCOM, 2005, vol.
2, pp. 992–1001.

[15] J. Hasan, S. Cadambi, V. Jakkula, and S. Chakradhar, “Chisel: A
storage-efficient, collision-free hash-based network processing archi-
tecture,” in Proc. ISCA, 2006, pp. 203–215.

[16] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash
table lookup using extended bloom filter: An aid to network pro-
cessing,” in Proc. ACM SIGCOMM, 2005, pp. 181–192.

[17] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix
matching using bloom filters,” IEEE/ACM Trans. Netw., vol. 14, no. 2,
pp. 397–409, Apr. 2006.

[18] H. Song, F. Hao, M. Kodialam, and T. Lakshman, “IPv6 lookups using
distributed and load balanced bloom filters for 100 Gbps core router
line cards,” in Proc. IEEE INFOCOM, 2009, pp. 2518–2526.

[19] M. Bando, N. S. Artan, and H. J. Chao, “FlashLook: 100 Gbps hash-
tuned route lookup architecture,” in Proc. HPSR, 2009.

[20] M. Hanna, S. Demetriades, S. Cho, and R. Melhem, “Progressive
hashing for packet processing using set associative memory,” in Proc.
ACM/IEEE ANCS, 2009, pp. 153–162.

[21] S. Sikka and G. Varghese, “Memory-efficient state lookups with fast
updates,” in Proc. ACM SIGCOMM, 2000, pp. 335–347.

[22] R. Sangireddy, N. Futamura, S. Aluru, and A. K. Somani, “Scalable,
memory efficient, high-speed IP lookup algorithms,” IEEE/ACM
Trans. Netw., vol. 13, no. 4, pp. 802–812, Aug. 2005.

[23] H. Song, J. Turner, and J. Lockwood, “Shape shifting tries for faster IP
route lookup,” in Proc. IEEE ICNP, 2005, pp. 358–367.

[24] A. Basu and G. Narlikar, “Fast incremental updates for pipelined
forwarding engines,” IEEE/ACM Trans. Netw., vol. 13, no. 3, pp.
690–703, Jun. 2005.

[25] W. Jiang and V. K. Prasanna, “Multi-terabit IP lookup using parallel
bidirectional pipelines,” in Proc. CF, 2008, pp. 241–250.

[26] H. Le and V. Prasanna, “Scalable high throughput and power efficient
IP-lookup on FPGA,” in Proc. IEEE FCCM, 2009, pp. 167–174.

[27] S. Kumar, M. Becchi, P. Crowley, and J. Turner, “CAMP: Fast and
efficient IP lookup architecture,” in Proc. ACM/IEEE ANCS, 2006, pp.
51–60.

[28] Samsung, “Samsung DRAM,” [Online]. Available:
http://www.samsung.com/

[29] Micron, “Micron DRAM,” [Online]. Available: http://
www.micron.com/

[30] B. Bloom, “Space/time trade-offs in hash coding with allowable er-
rors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[31] S. Kumar and P. Crowley, “Segmented hash: An efficient hash table
implementation for high performance networking subsystems,” in
Proc. ACM ANCS, 2005, pp. 91–103.

[32] A. Kirsch and M. Mitzenmacher, “The power of one move: Hashing
schemes for hardware,” in Proc. IEEE INFOCOM, 2008, pp. 106–110.

[33] N. Artan, H. Yuan, and H. Chao, “A dynamic load-balanced hashing
scheme for networking applications,” in Proc. IEEE GLOBECOM,
2008, pp. 1–6.

[34] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10, pp.
1094–1104, Oct. 2001.

[35] F. Hao, M. Kodialam, and T. V. Lakshman, “Building high accuracy
bloom filters using partitioned hashing,” in Proc. ACM SIGMETRICS,
2007, pp. 277–288.

[36] University of Oregon, “University of Oregon Route Views Project,”
2005 [Online]. Available: http://www.routeviews.org

[37] M. Wang, S. Deering, T. Hain, and L. Dunn, “Non-random generator
for IPv6 tables,” in Proc. IEEE HOTI, 2004, pp. 35–40.

[38] D. Klein, “Memory technology trends and challenges,” 2005 [Online].
Available: http://www.jedex.org/images/pdf/d_klein_keynote.pdf

[39] R. Advani, “Server memory solutions for the impending data center
power crisis,” 2008 [Online]. Available: http://download.micron.com/
pdf/whitepapers/server_memory_white_paper_hi.pdf

Masanori Bando (A’10) received the B.S. and M.S.
degrees in electrical engineering from Tamagawa
University, Tokyo, Japan, in 1999 and 2001, re-
spectively, and is currently pursuing the Ph.D.
degree, working on high-speed network security
and next-generation router architectures at the High
Speed Network Lab, Polytechnic Institute of New
York University, Brooklyn.

Yi-Li Lin received the B.S. and M.S. degrees in
computer science and information engineering from
National Cheng Kung University (NCKU), Tainan,
Taiwan, in 2002 and 2004, respectively, and is
currently pursuing the Ph.D. degree in the computer
science and information engineering at NCKU.
He was an exchange student, from November

2009 to May 2010, with the Department of Electrical
and Computer Engineering, Polytechnic Institute of
New York University, Brooklyn. His research inter-
ests include video codec, VLSI design, Electronic

System Level (ESL) design methodology/tools, and FPGA acceleration for
VLSI verification.

H. Jonathan Chao (S’82–M’83–SM’95–F’01)
received the Ph.D. degree in electrical engineering
from The Ohio State University, Columbus, in 1985.
He is the Department Head and a Professor of elec-

trical and computer engineering with the Polytechnic
Institute of New York University, Brooklyn, which
he joined in January 1992. During 2000 to 2001,
he was Co-Founder and CTO of Coree Networks,
Tinton Falls, NJ, where he led a team to implement a
multiterabit multi-protocol label switching (MPLS)
switch router with carrier-class reliability. From

1985 to 1992, he was a Member of Technical Staff with Telcordia, Piscatway,
NJ. He holds 42 patents with 10 pending and has published over 200 journal
and conference papers. He coauthored three networking books, Broadband
Packet Switching Technologies (Wiley, 2001), , Quality of Service Control
in High-Speed Networks (Wiley, 2001), and High-Performance Switches
and Routers (Wiley, 2007). He has also served as a consultant for various
companies, such as Huawei, Lucent, NEC, and Telcordia.. He has been doing
research in the areas of network designs in data centers, terabit switches/routers,
network security, network on the chip, and biomedical devices.
Prof. Chao is a Fellow of the IEEE for his contributions to the architecture

and application of VLSI circuits in high-speed packet networks. He received the
Telcordia Excellence Award in 1987

